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Informatics Issues in Large-Scale Sequence Analysis:
Elucidating the Protein Kinases of C. elegans
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Abstract With the availability of the nearly complete genomic sequence of C. elegans, the first multicellular
organism to be sequenced, molecular biology has definitely entered the postgenomic era. Annotation of the genomic
sequence, which refers to identifying the genes and other biologically relevant sections of the genome, is an important
and nontrivial next step. A first-pass annotation will be necessarily incomplete but will drive further biological
experiments, which in turn will help to annotate the genome better. Given the scale of the genome sequence analysis,
it is clear that the annotation should be automated as much as possible without sacrificing the quality of analysis. In
this work, we outline our approach to identifying the protein kinases of C. elegans from the genomic sequence. We
describe new tools we have developed for analysis, management and visualization of genomic data. By developing
modular and scalable solutions, this study has provided a framework for future analysis of the Drosophila and human

genomes. J. Cell. Biochem. 80:181-186, 2000.  © 2000 Wiley-Liss, Inc.

Recent genomic sequencing efforts are yield-
ing unprecedented volumes of genomic data at
a pace previously undreamed of, promising to
soon provide several complete genomes, includ-
ing Drosophila and human. The challenge now
is to manage, analyze, annotate, and visualize
genomic data. The recently completed C. el-
egans genome [The C. elegans Sequencing Con-
sortium, 1998] provides a useful glimpse into
the prospects and perils of large-scale sequence
analysis. At 100 million bases in length, the C.
elegans genome is still small compared to those
of higher eukaryotes, but already large enough
to present significant challenges in scalability
of analysis. Also, as the first multicellular or-
ganism to be completely sequenced, it presents
a reasonable model system for the analysis of
higher eukaryotes.

For the present purposes, we focused our anal-
ysis on identifying protein kinases, which are
involved in signal transduction and specifically
protein phosphorylation. In eukaryotes, protein
phosphorylation plays a critical role in cell cycle
regulation, DNA replication, gene transcription,
protein translation, and energy metabolism. In
multicellular eukaryotes, such as worms, it also
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affects more complex functionality (such as cel-
lular differentiation, intercellular communica-
tion, cell survival and senescence, synaptic trans-
mission, and environmental interaction). Protein
kinases constitute 2.4% of the worm genome and
are the second most prevalent protein family in
worms. A comprehensive analysis of the C. el-
egans protein kinases appears elsewhere [Plow-
man et al., 1999]; our emphasis here is on de-
scribing the computational framework used for
the analysis. Our analysis strategy can be ap-
plied to other protein families as well as other
genomes to identify biologically interesting fea-
tures.

Data Analysis Pipeline

In order to cope with the huge amount of
genomic data, sequence analysis clearly must
be automated to the greatest extent possible,
while preserving the quality, accuracy, and
precision of the results. Relational database
management systems greatly simplify the task
of data warehousing and retrieval, but creating
a central, ordered repository of sequence data
is only the beginning. The larger questions are
what data to store, how to analyze and anno-
tate it, and how to ultimately visualize the
results. Scripting and automation languages
make it possible to create a large-scale data
flow pipeline with minimal human interven-
tion and human error. It should be emphasized
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that these are only enabling technologies that
leave open the question of what to automate
and how to ensure the quality of the end prod-
uct. A variety of algorithms exist for homology
and profile searching of large data sets, includ-
ing BLAST [Altschul et al., 1997], Smith-
Waterman [Smith and Waterman, 1981], and
Hidden Markov Models [Krogh et al., 1994].
These tools form an essential part of a se-
quence analysis pipeline. But their integration
and the interpretation of their results pose a
significant challenge. Finally, after construct-
ing a data analysis pipeline, complete with
data warehousing, scripting, and algorithms,
some new set of annotation data emerges. Ul-
timately a human must inspect or sift through
the data in order to confirm its validity and
utility. Existing tools are already of use in data
visualization, including genome browsers and
tree viewers. But the sheer volume of data
already strains many existing visualization
tools to their practical limits, while introducing
new problems of navigation. In the course of
our analysis of the C. elegans protein kinases,
we found it necessary to create our own data
visualization tools. In what follows, we outline
our data analysis pipeline.

Data Management

The complete C. elegans genome is available
for download from the Sanger Center (http:/
www/sanger.ac.uk), as cosmids, as six chromo-
somal assemblies, and as 19,099 putative
worm proteins. After downloading each data
set, we imported the raw sequence data into a
relational database, storing the accession num-
bers, sequence text, time stamp, and so forth.
At each step of the analysis, results—either
intermediate or final—were imported into new
tables, each linked back to the raw sequence
data. The Sugen C. elegans database, called
SuCeDb, contains tables for raw sequence
data, for open reading frame predictions, for
domain predictions including protein kinases,
and for additional sequence annotation (Fig. 1).
A typical step in the analysis pipeline requires
querying the database, running some form of
analysis on the data, and storing the results of
the analysis back in SuCeDb. Depending on
the complexity of a particular analysis algo-
rithm, database interaction may itself be the
rate-limiting step. This is the case, for exam-
ple, with sequence translation, a trivial enough
operation taking on the order of a few minutes

Fig. 1. Schema for sequence analysis dataflow. Database con-
tains tables for raw sequences (Worm chromosomes, Worm
cosmids); predicted proteins (WormPep); known kinases and
boundaries for catalytic domains (Known kinases); and tables
for storing results of the analysis (Analysis).

for the complete worm genome. In the case of
more complex analysis, such as homology and
pattern-based searching, database access occu-
pies a less significant portion of the overall
time. Better hardware and relational database
performance tuning can alleviate some of the
stress on computer resources. But the biologi-
cally interesting portion of the data analysis
pipeline is not the storage mechanism, but rather
the data and the analysis that produces it.

Analysis

For the nucleic acid databases, the next step
after downloading and data warehousing was
to translate the sequences into all six reading
frames, identifying potential coding regions.
All open reading frames (ORFs) longer than 30
amino acids were retained and stored in a sep-
arate database table. A variety of algorithms
exist for searching and analyzing the opening
reading frames, including gene recognition al-
gorithms (for a comprehensive collection of
gene prediction algorithms, see http:/linkage.
rockefeller.edu/wli/gene/), homology search
methods [Altschul et al., 1997; Smith and Wa-
terman, 1981], profile search methods [Krogh
et al., 1994; Eddy, 1998], and pattern search
tools [Henikoff et al., 1999]. As always, the
choice of algorithms must depend on the spe-
cific nature of the problem. Clearly to identify
protein kinases it was not necessary to assem-
ble all genes or identify all intron/exon bound-
aries in the entire genome.

One search strategy, and by far the most
prevalent today, is homology searching, using
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TABLE 1.

Frame Begin base End base Begin model End model E value Score
-1 21,512 20,169 122 261 4.60E-37 137.2
-2 21,532 21,398 94 122 3.60E-02 14.8
-3 21,648 21,529 71 90 9.40E-02 13.3
-3 21,798 21,652 28 67 1.00E-01 13.2
-2 22,223 21,765 1 21 3.90E-04 21.7

Alignment of ZC404 kinase on the hidden Markov model (HMM). Coordinates for open reading frames FRAME, BEGIN-
_BASE, END_BASE) that contain the putative kinase exons are shown in the first three columns. Alignments of each exon
on the HMM (BEGIN_MODEL, END_MODEL) are shown in the next two columns. Finally, for each kinase exon, expectation

values and scores against the model are shown.

either the fast, heuristic BLASTZ2 algorithm or
the slower but more sensitive Smith-
Waterman algorithm. These general purpose
algorithms accept a query sequence as an ar-
gument and search against a database for ho-
mologous sequence segments, assigning an
E-value to the results. By using a straight
homology-based method, it is possible to search
the C. elegans open reading frames against a
broad set of protein sequences. Then any match
against a known kinase, meeting some thresh-
old criterion, would positively identify a poten-
tial C. elegans kinase. This turns out to be a
viable strategy, although as a general-purpose
algorithm it does not benefit in any way from
the family-specific nature of the problem of
finding a particular known protein domain.
Enter the pattern search strategies, includ-
ing PSI-BLAST [Altschul et al., 1997] and Hid-
den Markov Models (HMM) [Eddy, 1998]. PSI-
BLAST is a hybrid strategy that begins with a
general-purpose search, but iteratively con-
structs a problem-specific pattern. HMM is
more directly family specific, requiring clear a
priori knowledge of a family or of some of its
members. In the case of protein kinases, such a
priori knowledge is readily available. Concep-
tually, the most natural choice for a pattern
search algorithm was a Hidden Markov Model.
Such a model “describes a family of proteins by
assigning large probabilities to sequences in
that family” [Krogh et al., 1994]. The descrip-
tion consists, essentially, of a vector of proba-
bilities for each amino acid position, with the
probability specifying the likelihood of a given
amino acid occurring at that position. In order
to construct such a model, considerable prior
knowledge of a protein family is required, typ-
ically in the form of a set of representative
sequences. Therefore, HMMs are not suitable
for general database searching. Nor do they

take into account higher-level correlations;
such as those arising from structural features.
These caveats aside, HMMs capture the
family-specific nature of the problem of identi-
fying protein kinases.

To construct a model of the kinase family, we
started with sequences of kinase catalytic do-
mains from yeast to human. To avoid biasing
the model toward certain subfamilies, thus re-
ducing sensitivity to other subfamilies of ki-
nases, we effectively eliminated all kinases
with homology in their catalytic domains
greater than 50%. This left 70 broadly repre-
sentative kinases. This general, ‘representa-
tive’ kinase profile served to identify all poten-
tial kinases in the C. elegans genome.

An HMM search may be used to identify
complete or partial matches against the profile.
It was crucial to search for partial matches,
since short open reading frames could not be
expected to contain a complete kinase. Rather,
kinases might be spread across multiple exons,
with frame-shifts in between. In fact, such was
frequently the case. See Table I in which a
cosmid denoted by its accession number ZC404,
has five distinct exons in all three reverse
strand reading frames. Some of these frag-
ments have relatively low scores—low enough
that they might easily be overlooked on their
own. But combined, the five fragments yield a
complete kinase domain with a highly signifi-
cant score.

Using a custom gene assembly algorithm, all
such fragments were assembled to form as
many complete kinase domains as possible.
The criteria were as follows: fragments must be
on the same strand; they must consecutively
span the kinase profile so that each additional
fragment adds to the complete kinase domain;
they must not overlap by ‘too much’, defined
arbitrarily as a maximum of a 10 amino acid
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overlap (results varied little in response to the
precise cutoff value). No restrictions were
placed on the length of introns, as intron
lengths varied tremendously. After assembling
kinase fragments, the assembled kinases were
scored against the complete kinase HMM, this
time forcing a global match. All fragments and
assembled kinases were stored in the database,
along with precise location and strand informa-
tion, HMM scores and E-values, and the
matching region in the kinase profile.

All analysis up through this point—from
downloading the raw genomic sequence, stor-
ing it in a database, translating it an six
frames, searching against an HMM profile,
parsing the results of that search, storing the
results in a database, assembling fragmentary
kinases, and storing these in the database—
was entirely automated using simple shell
scripts and programs written in the Java lan-
guage. It executes relatively quickly (on the
order of a few hours using a standard single-
processor desktop computer with average spec-
ifications), with the overwhelming majority of
the time consumed in database access and
HMM searching. With hardware-accelerated
versions of the HMM algorithm just now be-
coming available, this portion of the analysis
can be vastly sped up. By bypassing some of the
intermediate database storage, or by accessing
the database using a separate processor, the
final bottleneck can be partly alleviated
through a combination of hardware and careful
optimization. Significantly, the entire auto-
mated pipeline scales linearly with respect to
the length of the genomic sequence. By anno-
tating sequence data incrementally, as it be-
comes available, the volume of data should re-
main manageable even as the larger
Drosophila and human genomes become avail-
able.

With a scalable, fully automated pipeline in
place for identifying C. elegans kinases, the
automated portion of the annotation quickly
reached its end. Human inspection and analy-
sis were required to refine the initial output set
down to a final set of 408 kinases, 21 kinase
fragments and 82 kinase-like domains [Plow-
man et al., 1999]. Some redundant entries ap-
peared, which were eliminated using pairwise
Smith-Waterman analysis. Also, a few kinases
spanned multiple cosmid clones and by exam-
ining the N- or C- termini of adjacent cosmids,
it was possible to assemble the complete do-

mains. Notably, the analysis of translated
genomic data turned up approximately 40 ki-
nase domains that were absent in the 19,099
protein data set separately available. This dis-
parity suggests limitations in using gene pre-
diction algorithms as the sole means of identi-
fying coding regions. Our experience suggests
that gene prediction algorithms should be sup-
plemented by homology or profile search algo-
rithms.

Finally, the putative kinases were clustered
using hierarchical ‘phylogenetic’ methods. This
required the creation of a multiple sequence
alignment of all of the kinase catalytic domains
which was created by aligning against the
HMM. Then it was possible, using the Phylip
package [Felsenstein, 1989], to create parsimo-
nious tree structures approximating the rela-
tions among the kinases. At this point, the
problem of data analysis became a problem of
data visualization.

Vizualization

There were two primary types of data that
needed to be visualized in the course of identi-
fying potential protein kinases in C. elegans.
As mentioned already, it was helpful to repre-
sent the various kinase families as a tree. Once
a tree structure had been generated, we graph-
ically viewed that tree in a variety of forms: an
unrooted tree, a dendogram, and a less familiar
format called a hyperbolic tree [Bingham and
Sudarsanam, 1999a]. In addition to tree struc-
tures, other types of data needed visualization,
specifically the HMM alignments and the posi-
tion of putative kinases relative to their open
reading frames raw sequences. A combination
genome browser and sequence viewer served
these purposes [Bingham and Sudarsanam,
unpublished].

Visualizing a tree of over 400 nodes, one for
each putative kinase, posed a variety of prob-
lems. It was difficult to search by eye through
all the labels in order to find a particular ki-
nase. It was hard to see in a glance whether the
clustering met prior expectations, and also
where exactly the clusters fell. Also, it was
difficult to navigate the tree, zooming in on
particular portions without losing track of the
relationship between that portion of the tree
and the rest of it. To address these needs, cus-
tom software was written to project large trees
on to hyperbolic space [Bingham and Sudarsa-
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Fig. 2. Hyperbolic view of protein kinases of C. elegans.

nam, 2000]. A projection of C. elegans kinase
tree in hyperbolic space is shown in Figure 2.

In addition to the tree viewer, a genome
browser and sequence viewer was created. It
can access SuCeDDb or the local file system, and
provides three distinct views of sequence data.
The first view is a simple tabular view of ac-
cession number, locations, HMM scores, and so
on. The second view shows pairwise or multiple
sequence alignments, with color-coded amino
acids and nucleic acids. Mismatches can be
highlighted by color inversion. The third view
represents a sequence, its open reading frames,
and any feature predictions such as kinases, as
horizontal bars. Base locations span the x-axis,
while the y-axis supports features and se-
quences of various categories (see Fig. 3). As
with the tree viewer, data can be color coded for
intuitive, at-a-glance classification, and indi-
vidual sequences or features can be selected
from a list. Also, the three views are closely
integrated, with selections in one view high-
lighting the corresponding data in the other
views. With both of these software projects,
software design posed its own set of challenges
for sequence analysis, automation, and scal-
ability.

Software Design

If not planned properly, software develop-
ment time can easily exceed data analysis
time. To minimize the time spent in writing
software, all code was written in the Java lan-

guage, proven to have development and debug-
ging time less than half that of C or C++.
Secondly, the programs were written using
component-based design for maximal code re-
use between applications and for the highest
level of software maintainability. Individual
components can be updated or interchanged
without affecting the integrity of the complete
system. Also, components can be quickly
adapted to new purposes; for example, the
alignment viewer can be used without modifi-
cation to view HMM alignments, BLAST align-
ments, or multiple sequence alignments. By
using current software development para-
digms, tremendous time and energy has been
saved, as great as any in the remainder of the
analysis pipeline. Finally, it is worth noting
that the performance-critical aspects of the vi-
sualization tools all scale linearly with respect
to the number of sequences. A standard per-
sonal computer with typical RAM and clock
speeds can support all visualization needs for
the C. elegans kinases.

CONCLUSION

Many of the prerequisites for large-scale
genomic sequence analysis are readily available.
With the complete Drosophila and human ge-
nomes on the way, there can be no doubt about
the ‘large scale—the pure magnitude—of the
challenge that confronts genomics and bioinfor-
matics. Fortunately, a range of algorithms and
technologies already exist for dealing with this
data, including relational databases, homology
and profile search algorithms, scripting lan-
guages, and data visualization tools. While cer-
tainly partial and imperfect, they nonetheless
provide a starting point. The challenge of large-
scale sequence analysis is to carefully integrate
the existing technologies, to build upon them
where necessary, and to preserve data integrity
and quality of analysis in the process.

With the completion of the C. elegans ge-
nome, the first fully sequenced multicellular
organism, all of the problems and pitfalls of
large-scale sequence analysis are becoming ap-
parent. From our study, the following guiding
principles have emerged: write scalable soft-
ware, since more hardware may not be the
solution; encapsulate domain-specific knowl-
edge in the database design; use existing soft-
ware when available, and write reusable
component-based software when it is unavail-
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Fig. 3. Genome browser. Table in top left shows kinase exon predictions along with coordinates of these exons on
a cosmid. Top right panel shows a color-coded view of the assembled kinase domain. Bottom panel shows the
alignment of kinase exons (top row) on the cosmid (middle row). ORFs in six frames are shown above and below

the cosmid.

able; automate analysis to the greatest extent
possible. Finally, since there is no real substi-
tute for a human expert in assessing the qual-
ity of sequence alignments, all tools should ca-
ter to human experts. By following these
principles, the analysis pipeline outlined for
protein kinases can scale up as larger complete
genomes become available.
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